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DESIGN PROBLEM OF LAMINATED PLATES

WITH SPECIFIED CHARACTERISTICS

UDC 539.3A. G. Kolpakov

The problem of design of laminated plates with specified stiffness and strength characteristics is
considered. The starting design problem is reduced to the convex-combination problems, which is
solved by the convolution method. The following design problems are solved: design with allowance
for strength, design of a laminated plate of unconstrained thickness, and design for approximately
specified characteristics.
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Many studies have dealt with the problem of design of laminated plates. The following problem of opti-
mal design has been extensively studied: Obtain a design of a plate that minimizes a certain functional (weight,
deflection, etc.) [1, 2]. Less attention has been given to the design problem formulated as follows [3–5]: Find the
method of design of a plate with specified (not necessarily optimal) characteristics. In the present paper, we show
that strength restrictions can be taken into account in the existing algorithms of design of laminated plates with
specified stiffness.

1. Formulation of the Problem. We consider a laminated plate composed of homogeneous isotropic
layers parallel to the coordinate plane (see Fig. 1). We denote the coordinate in the transverse direction of the plate
by y. For the laminated plate, Young’s modulus E(y) and Poisson’s ratio ν(y) are functions of y.

It is required to find the material distribution in the layers such that the plate has specified stiffnesses
(stiffness in the S0

ijk plane, nonsymmetric stiffnesses S1
ijkl, and flexural stiffnesses S2

ijkl). To this end, it is necessary
to solve the system of integral equations of the first kind

hµ+1

1/2∫
−1/2

E(y)
yµ

1− ν2(y)
dy = Sµiiii, µ = 0, 1, 2, i = 1,

hµ+1

1/2∫
−1/2

E(y)
yµ

1 + ν(y)
dy = Sµ1212, hµ+1

1/2∫
−1/2

E(y)ν(y)
yµ

1− ν2(y)
dy = Sµ1122

(1.1)

for the functions E(y) and ν(y) for given parameters Sµiiii, S
µ
1212, and Sµ1122.

The integrals in (1.1) represent stiffnesses of the plate expressed in terms of the elastic constants of the layers
[2, 4]. System (1.1) is written for the plate of unit thickness (the general case is considered below).

For simplicity, we set ν(y) = const [the case of ν(y) 6= const is considered below]. In this case, problem (1.1)
is a problem for one function E(y).

The plates are made of a finite number of materials. Hence, the function E(y) takes a finite number of
values.

We divide the plate into m layers of equal thickness δ = 1/m. The function E(y) is constant within the
intervals [−1/2 + (i− 1)/m,−1/2 + i/m). Here and below, i = 1, . . . ,m.
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Fig. 1

We introduce the notation d1i =
1
δ

1/2+i/m∫
−1/2+(i−1)/m

y dy and d2i =
1
δ

1/2+i/m∫
−1/2+(i−1)/m

y2 dy. System (1.1) becomes

m∑
i=1

Eiδ = S0,
m∑
i=1

Eid1iδ = S1,
m∑
i=1

Eid2iδ = S2. (1.2)

The quantities S0, S1, and S2 are expressed in terms of the right sides of Eqs. (1.1) and ν. Dividing equalities (1.2)
by S0, we obtain the problem

m∑
i=1

xi = 1, xi ∈ Zn,
m∑
i=1

xivi = v, (1.3)

where xi = Eiδ/S
0, vi = (d1i, d2i) (i = 1, . . . ,m), and v = (S1/S0, S2/S0). The unknowns in problem (1.3) are Ei.

The physical meaning implies that Ei > 0.
2. Discrete Convex-Combination Problem. We consider the following problem. Let Zn ⊂ [0, 1] be a

finite set (consisting of n numbers) and vi (v ∈ Rk) be specified vectors. It is required to find the numbers xi that
are the solution of the problem

m∑
i=1

vixi = v; (2.1)

m∑
i=1

xi = 1; (2.2)

xi ∈ Zn, i = 1, . . . ,m. (2.3)

Problem (2.1), (2.2) subject to

0 6 xi 6 1 (2.4)

is the convex-combination problem (CCP) considered in [5]. Problem (2.1)–(2.3) is a discrete CCP.
The general solution of problem (2.1)–(2.3) (i.e., set of all its solutions) can be constructed in the following

manner. We replace the discreteness condition (2.3) by condition (2.4). The general solution of the CCP (2.1),
(2.2), (2.4) obtained in [5] (see also [4, 6]) has the form

xi =
M∑
γ=1

Piγλγ (i = 1, . . . ,m), (2.5)

where M <∞ and λγ (γ = 1, . . . ,M) are any numbers satisfying the conditions
M∑
γ=1

λγ = 1, 0 6 λγ 6 1. (2.6)

The vectors Pγ = (P1γ , . . . , Pmγ) (γ = 1, . . . ,M) are the so-called simplicial solutions of the CCP (2.1),
(2.2), (2.4), constructed by the method proposed in [5]. For random perturbations of the coefficients {vi} and free
term v in the CCP (2.1), (2.2), (2.4), the system of vectors {Pγ , γ = 1, . . . ,M} coincides with the set of the end
points of the polyhedron Λ(v) with a probability of 1. Consequently, it is the minimum system of points generating
the set Λ(v) [7]. This property can be used to solve the problem numerically by the method proposed in [5].
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The set Λ(v) of the solutions of the CCP (2.1), (2.2), (2.4) can be written in the form Λ(v) = conv{Pγ and
γ = 1, . . . ,M} (conv denotes the convex combination [8]). The set Zmn = {x: xi ∈ Zn} is a discrete grid in Rm.
The set of solutions of the CPP (2.1)–(2.3) is Λ(v)∩Zmn . Problem (2.1)–(2.3) is solved once the quantities satisfying
the condition xi ∈ Zn are found among the quantities xi determined by formulas (2.5) and (2.6).

Relations (2.5) and (2.6) can be considered as the CCP for the quantities λγ . The convexity of Λ(v) implies
that, if the first i− 1 equations in (2.5) are satisfied, the next ith equation is solvable if and only if

xi ∈ Ii = [min
i
,max

i
]. (2.7)

It should be noted that the interval Ii depends on the choice of x1, . . . , xi−1.
From (2.7), we obtain the necessary and sufficient condition for the existence of the solution of the discrete

CCP Z(i) = Zn ∩ Ii 6= Ø for all i = 1, . . . ,m.
Since the intervals Ii depend on the choice of x1, . . . , xi−1, the tree T arises. We denote the root of this tree

by T (0). Branching of the tree at the level T (i − 1) is determined by points Z(i). Any branch that passes from
the root T (0) to the level T (m) gives the solution of the discrete CCP (2.1)–(2.3). Conversely, any solution of the
discrete CCP corresponds to the branch that passes from the root T (0) to the level T (m). Thus, once the tree T
is constructed, we find the entire set of solutions of the discrete CCP [9].

We describe the step of the iterative algorithm of constructing the tree T . Let the design fragment
x1, . . . , xi−1 be available (i.e., the first i − 1 layers of the plate are filled). At the ith step, all the available
fragments x1, . . . , xi−1 are supplemented by the quantities xi that satisfy (2.7) for the corresponding fragments
x1, . . . , xi−1. As a result, we obtain the fragment x1, . . . , xi−1, xi.

The main procedures of the numerical algorithm are described in [9]. It follows from [9] that the solution of
the discrete CCP reduces to the solution of the CCP and linear-programming problem.

3. Approximate Solutions of the CCP. The set Λ(v) (2.1), (2.2), (2.4) belongs to a hyperplane and its
dimension is smaller than m [10]. The points from Zmn located near the set Λ(v) correspond to approximate designs
(designs of plates whose stiffnesses are close to specified values). According to [10], to find approximate designs,
one should perturb the set {Pγ , γ = 1, . . . ,M} by vectors wi = (vi, 1) orthogonal to the set Λ(v) and then solve
the CCP for this system of vectors.

Let the perturbation of the set {Pγ , γ = 1, . . . ,M} be of the form {PM+1+j = Pj+1 + ζwj , j = 0, 1, 2},
where ζ is the characteristic magnitude of perturbation. Thus, three vectors with components orthogonal to Λ(v)
are added to the system of vectors {Pγ , γ = 1, . . . ,M}.

4. Averaged Strength Criterion. The averaged strength criterion of a composite is understood as a
criterion written in terms of characteristics of a plate as a two-dimensional object, which allows one to estimate
the strength of this plate as a three-dimensional (though thin) heterogeneous body. These criteria can be obtained
from the formulas relating the local stresses σεij in the plate considered as a three-dimensional body to the strain
characteristics of this plate as a two-dimensional object. For a laminated plate, these formulas were obtained, for
example, in [4, 6] and have the form

σεij = cijαβ(y)[εαβ + (y − S1/S0)ραβ ] (i, j = 1, 2, 3, α, β = 1, 2),

where cijkl(y) is the elastic-constant tensor, εαβ is the strain tensor in the plate plane, and ραβ is the curvature
tensor.

Given the relations between εαβ and ραβ and in-plane forces Nαβ and moments Mαβ ,

Nαβ = S0
αβγδεγδ + S1

αβγδργδ, Mαβ = S1
αβγδεγδ + S2

αβγδργδ,

one can express σεij in terms of Nαβ and Mαβ .
We consider the case where Poisson’s coefficients of the layers are equal. The elastic-constant tensor can be

written as

cijkl(y) = E(y)c0ijkl,

where c0ijkl is independent of y. Then, if the ith layer of the plate [−1/2 + (i − 1)/m,−1/2 + i/m] is filled by the
Kth material, the local stresses in this layer are calculated by the formula

σεij = EKc
0
ijkl[εαβ + (y − S1/S0)ραβ ], y ∈ [−1/2 + (i− 1)/m,−1/2 + i/m). (4.1)
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Let the strength criterion of the Kth material be of the form

fK(σεij) < 1, (4.2)

where fK is the nonnegative Lipschitz function.
Substituting (4.1) into (4.2), we obtain the averaged strength criterion for the ith layer under the condition

that it is filled by the Kth material:

FK(εαβ , ραβ) ≡ fK{EKc0ijkl[εαβ + (y − S1/S0)ραβ ]} < 1. (4.3)

The plate was divided into layers with a step 1/m. In this case, (4.3) can be replaced by the condition

FK(εαβ , ραβ) ≡ fK{EKc0ijkl[εαβ + (−1/2 + i/m− S1/S0)ραβ ]} < 1 (4.4)

with an error M/m (M is the maximum of the Lipschitz constants for the functions fK , where K = 1, . . . , n).
For the design {E1, . . . , Em} or {x1, . . . , xm}, all layers of the plate remain undamaged provided that condi-

tion (4.4) holds for all i = 1, . . . ,m. If condition (4.3) is not satisfied, the corresponding layer fails. Conditions (4.3)
and (4.4) are the exact and approximate strength conditions, respectively.

5. Design Problem with Allowance for Strength. It is required to find all designs of plates with
specified stiffnesses Sµ (µ = 0, 1, 2) which can sustain the strains εαβ and ραβ (or loads Nαβ and Mαβ) without
failure of the layers. The mathematical formulation of the problem is as follows: Solve problem (2.1)–(2.3) subject
to (4.4). To solve the problem, one can employ the algorithm for solving the CCP described in Sec. 2 using
condition (4.4) as a filter at the current step of this algorithm. To substantiate this statement, we describe the step
of the algorithm for solving the CCP (see Sec. 2). At the ith step, the existing design fragment {x1, . . . , xi−1} is
supplemented by the quantity xi that satisfies condition (2.7).

We change the step of the algorithm in the following manner. Let xK satisfy (2.7) (the subscripts i and
K refer to the layer and material numbers, respectively). We verify whether the following condition holds:

FKi(εαβ , ραβ) ≡ fK{EKc0ijkl[εαβ + (−1/2 + i/m)ραβ ]} < 1. (5.1)

If condition (5.1) is satisfied, xK = EK/(mS0) is taken as a possible value. Obviously, this corresponds to the
algorithm described in Sec. 2, in which the condition xi ∈ Ii is replaced by

xK ∈ Ii ∩ {xR: xR = EK/(mS0)}, (5.2)

where xR satisfies condition (5.1). Thus, at the step of the algorithm described in Sec. 2, the additional condition
(5.1), which we call strength-criterion filter, should hold.

Condition (5.2) has the mechanical meaning. If this condition is satisfied, the material with Young’s modu-
lus EK (xK and EK are uniquely related) is a candidate for a filler of the ith layer.

The modification of the algorithm proposed allows one to obtain all solutions of the design problem (2.1)–
(2.3) with condition (4.4). This follows from the fact that the set of vectors (2.5) yields all solutions of the CCP
and any solution of the design problem (2.1)–(2.3), (4.4) satisfies (2.5) and (5.2).

In the case where the loads Nαβ and Mαβ are specified, the strains εαβ and ραβ can be expressed in terms
of Nαβ and Mαβ . As a result, we arrive at the problem considered above.

6. Introducing the Plate Thickness into the Set of Design Variables. We consider a plate of
unconstrained thickness h. The stiffnesses Sµiiii(h) (µ = 0, 1, 2) of the plate of unconstrained thickness can be
written in the form Sµiiii(h) = hµ+1Sµiiii, where Sµiiii (µ = 0, 1, 2) are the stiffnesses of the plate of unit thickness
[see (1.1)]. Using this expression, we transform Eqs. (2.1)–(2.3) to the discrete CCP with the right side dependent
on h:

m∑
i=1

vixi =
(v1

h
,
v2

h2

)
,

m∑
i=1

xi = 1. (6.1)

[xi satisfy condition (2.3)]. In (6.1), the vectors vi and v are the same as in Sec. 1.
To design a plate of thickness h with the stiffnesses Sµ1111 (µ = 0, 1, 2), it is necessary to solve problem (6.1)

for a specified value of h. If the plate thickness is not specified, one can vary it in steps δh within a certain interval
[hmin, hmax] and solve problem (6.1) with the right side (v1/h, v2/h

2), where h = hmin + pδh, p = 1, . . . , int((hmax

− hmin)/(δh)) (int is the integer part).

293



The interval [hmin, hmax] (if it is not specified) can be estimated for the given stiffnesses Sµ1111 (µ = 0, 1, 2).
For the plate thickness, we obtain the estimates

a0 < h < b0, a1 < h < b1, a2 < h < b2,

where a0 = S0/Emax, b0 = S0(1 − ν2)/Emin, a1 = (8S1/(Emax − Emin))1/2, b1 = ∞; a2 = (12S2/Emax)1/3,
b2 = (12S2/Emin)1/3, and Sµ = (1− ν2)Sµ1111. Hence,

hmin = max{a0, a1, a2}, hmax = min{b0, b2}. (6.2)

7. Program and Numerical Examples. The algorithms considered above were implemented in a
computer program, which consists of three main procedures: estimation of the plate thickness, solution of the CCP,
and solution of the discrete CCP.

7.1. Test Problem — Redesign Problem. The redesign (alternative design) problem for laminated
plates is formulated as follows. Let there be a certain design of a plate E∗ = {Ei, i = 1, . . . ,m}. For this design,
we calculate the values of Sµ (µ = 0, 1, 2) using formula (1.2). Then, we solve the design problem. As a result, we
obtain a set of designs of the plate with the same values of Sµ (µ = 0, 1, 2), i.e., alternative designs. If the algorithm
allows one to find all designs of the plate with specified values of Sµ (µ = 0, 1, 2), they contain the original design
E∗ = {Ei, i = 1, . . . ,m}.

Example of the Exact Solution of the Redesign Problem. We obtain the solution of the redesign problem
for the original design E∗ = {7, 20, 7, 20, 7, 20, 7} of a seven-layered plate (m = 7). With a factor of 1010, the
values E∗i = 20 correspond to steel (Young’s modulus of steel is equal to 2 · 1011 Pa) and the values E∗i = 7 to
aluminum (Young’s modulus of aluminum is equal to 0.7 · 1011 Pa) [11]. For this design, the stiffnesses take the
values S0 = 12.571, S1 = 0, and S2 = 0.896.

We consider the case where the plate is designed with the use of six materials with Young’s moduli be-
longing to the set M6 = {20, 7, 13, 8, 11, 9}. Using the algorithm described above, we obtain three designs:
E1 = {7, 20, 7, 20, 7, 20, 7}, E2 = {11, 11, 11, 20, 13, 13, 9}, and E3 = {9, 13, 13, 20, 11, 11, 11}. For all these de-
signs, we have S0 = 12.571, S1 = 0, and S2 = 0.896.

The design E1 is original and designs E2 and E3 correspond to two more exact solutions. The existence of
the exact redesign-problem solutions that differ from the original solution follows from the theorem on the general
solution of a system of linear equations in integers [12].

Approximate Solution of the Design Problem (Problem with the Perturbed System {Pγ , γ = 1, . . . ,M + 3}).
The exact solutions of the redesign problem are given above. If the design program finds all solutions in solving
the design problem in both exact and approximate formulations, all exact solutions should be among the solutions
of the approximate problem. In this case, the designs that correspond to the smaller value of the perturbation
parameter should be among the solutions that correspond to the larger perturbation parameter.

The problem was solved for perturbation parameters ζ = 0.01 and 0.02. Numerical solutions show that, as ζ
increases, new solutions appear in addition to those obtained previously.

“Dissymmetric” Solutions of the Design Problem. From the mechanical viewpoint, each design of a plate
with zero nonsymmetric stiffness should correspond to the design with the same in-plane and flexural stiffnesses of
the plate and “dissymmetric” arrangement of the layers. In this case, the structure can be nonsymmetric about the
plane y = 0. The algorithm allows one to find these designs. In the solution given above, the designs E2 and E3

are “dissymmetric”.
Design with Allowance for Strength. As an example, we consider the design of a plate with allowance for

strength. We write the strength criterion (4.2) in the form

fK(σεij) = (σεij − σεijδij/3)2/(σ∗K)2 < 1,

where σ∗K is the ultimate strength of the Kth material. The values of Young’s moduli and ultimate strengths used
in the calculations are listed in Table 1.

As was noted in Sec. 5, the strength condition is a filter for designs of plates with specified stiffnesses. As the
load parameter increases, the set of designs decreases: only those designs that are able to withstand the increasing
loads (strains) are retained. In the limit, we obtain the design of the strongest plate with specified stiffnesses.
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TABLE 1

i Ei · 1010, Pa σ∗i · 107, Pa

1 20 30
2 7 19
3 13 30
4 8 7
5 11 10
6 9 20

Let us solve the redesign problem that corresponds to the design E∗ = {7, 20, 7, 20, 7, 20, 7} for the set of
materials M6 = {20, 7, 13, 8, 11, 9} with ζ = 0.02. We consider cylindrical flexure of the plate of curvature ρ11 (ρ11 is
the loading parameter). For ρ11 < 0.07, we obtain five designs including the original one. For 0.08 < ρ11 < 0.1,
two designs are obtained: {7, 20, 7, 20, 7, 20, 7} and {9, 13, 13, 20, 11, 11, 11}. For 0.1 < ρ11 < 0.12, one design is
obtained: {9, 13, 13, 20, 11, 11, 11} (design of the strongest plate). For ρ11 > 0.12, no solutions are found.

Thus, the original design {7, 20, 7, 20, 7, 20, 7} is not the strongest one. If, in addition to the stiffnesses, it
is necessary to take into account the strength properties of the plate, one should use the alternative design of the
plate {9, 13, 13, 20, 11, 11, 11} which has the same stiffnesses as the original design but can sustain stronger (by 20%)
cylindrical flexure.

Design of a Plate of Unconstrained Thickness. Above, we considered some problems of design of laminated
plates of specified (unit) thickness. The condition of specified plate thickness imposes a rather strong restriction
on the design. In Sec. 6, we show how the plate thickness can be introduced into the number of design variables.
We give the calculation results for the case where the plate thickness is a design variable. We consider the redesign
problem under the condition that the alternative designs of the plate can give different thicknesses. As an original
design, we use the design E∗ = {7, 20, 7, 20, 7, 20, 7} in which the plate thickness is h = 1. In this case, S0 = 12.571,
S1 = 0, and S2 = 0.896. We solve the redesign problem for a thickness h = 0.9. For the perturbation parameter
ζ = 0–0.04, the problem has no solutions. For ζ = 0.05, the problem is solvable and the following two designs are
obtained: E1 = {13, 13, 7, 7, 20, 7, 13} and E2 = {13, 12, 7, 7, 20, 8, 13}. For the first design, we have S0 = 11.429,
S1 = −0.02, and S2 = 1.014. The values of S0 and S2 differ from the original values by 9 and 13%, respectively.
For the second design, we obtain S0 = 11.571, S1 = −0.061, and S2 = 1.026. The stiffnesses S0 and S2 differ from
the original values by 8 and 15%, respectively.

7.2. Design Problem. In the design problem, the stiffnesses are taken arbitrarily. Since the solution of
the design problem of a laminated plate is equivalent to the solution of a system of integral equations of the first
kind, the design problem, as a rule, has no exact solution [13]. Therefore, the design problem can be formulated
and solved only approximately (this is the reason for the author’s attention to the problems discussed in Sec. 3).

Given the stiffnesses, we determine the interval [hmin, hmax] of possible values of the plate thickness using
formulas (6.2) and solve the design problem for h ∈ [hmin, hmax]. We use a perturbation procedure that allows one
to obtain both exact and approximate solutions.

Let the following stiffnesses be specified: S0
1111 = 10, S1

1111 = 0, and S2
1111 = 1. It should be noted that the

quantities S0, S1, and S2 in the above examples differ from S0
1111, S1

1111, and S2
1111 by an identical factor.

Formulas (6.2) yield hmin = 0.45 and hmax = 1.3. We solve the design problem varying the plate thickness
from hmin to hmax in steps δh = 0.1. In the calculations, the perturbation parameter is taken to be ζ = 0.05.

For h = 0.5, 0.6, and 0.7, the problem has no solutions. In particular, the CCP (6.1) has no solutions. For
h = 0.8, 0.9, and 1.0, the problem has no solutions since discrete solutions are absent. For h = 1.1, 70 solutions are
obtained. For h = 1.2, 16 designs are obtained. For h = 1.3, there are no solutions.

Designs with stiffnesses closest to specified values were obtained for h = 1.1. Hence, designs should be
sought in the neighborhood of h = 1.1. This search was performed using the program of design of laminated
plates. We give 4 out of 30 designs obtained for h = 1.03: E1 = {13, 8, 11, 7, 7, 13, 11}, E2 = {13, 8, 9, 11, 7, 9, 13},
E3 = {13, 9, 7, 11, 9, 8, 13}, and E4 = {13, 9, 8, 11, 8, 8, 13}. For these designs, S1 = 10, S2 = 0, and S3 = 0.944.
The stiffnesses differ from the specified values for S3 only and the discrepancy is 6%, which is acceptable from the
engineering viewpoint.
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8. Case of ν 6= const. If ν 6= const, all equations in (1.1) cannot be simultaneously reduced to the problem
of the form (1.3). We consider the groups of equations

hµ+1

1/2∫
−1/2

z(y)yµ dy = Sµijkl (µ = 0, 1, 2), (8.1)

where

z(y) = zI(y) = E(y)/(1− ν2(y)) for ijkl = iiii (problem I),
z(y) = zII(y) = E(y)/(1 + ν(y)) for ijkl = 1212, 2121 (problem II),
z(y) = zIII(y) = E(y)ν(y)yµ/(1− ν2(y)) for ijkl = 1122, 2211 (problem III).

(8.2)

For each material, the quantities Ei and νi are known. Therefore, one can introduce the sets ZnI, ZnII,
and ZnIII such that zI(y) ∈ ZnI, zII(y) ∈ ZnII, and zIII(y) ∈ ZnIII. As a result, Eq. (8.1) reduces to three discrete
CCPs corresponding to problems I, II, and III. We denote the general solutions of these CCPs by ΛI, ΛII, and
ΛIII. Writing the solutions of the CCPs, we replace the elastic moduli by the corresponding material numbers (see
Table 1). The general solutions of the CCPs written in this form are denoted by MI, MII, and MIII. Then the set
of designs satisfying all three CCPs in (8.1) and (8.2) is given by

MI ∩MII ∩MIII. (8.3)

Thus, to solve the design problem for ν 6= const, it suffices to solve three CCPs (8.1), (8.2), write their
solutions using the material numbers, and form set (8.3).

The difference in Poisson’s ratios of materials is of significance in the only case where stiffnesses of different
types [see (8.2)] are specified, for example, if the in-plane stiffness S0

iiii and flexural stiffness S2
1212 are specified

(problems I and III, respectively). If stiffnesses of one type are specified, introduction of a new variable according
to (8.2) yields a problem of the form (1.3). For example, if the stiffnesses Sµiiii (µ = 0, 1, 2) are specified (problem I),
the problem is solved for the function zI(y) = E(y)/(1 − ν2(y)). To solve this problem, one should replace the
set Zn = {Ei} by the set {Ei/(1 − ν2

i )} and solve the problem in the similar manner as in the case of ν = const
considered above.

9. Design of a Plate with Specified “Physical” Stiffnesses in an Arbitrary Coordinate System.
The stiffnesses of the plate depend on the choice of the plane y = 0. At the same time, the mechanical behavior
of the plate should be independent on the choice of the coordinate system. To avoid this contradiction, one should
use the model of the plate written in terms of invariants [14] or specify “physical” stiffnesses.

For an arbitrary coordinate system K and a coordinate system K(h) shifted by the distance h along the y
axis relative to system K, we obtain the following relations for the quantities defined in (1.2) [the values of Sµ

(µ = 0, 1, 2) coincide with the values of stiffnesses with accuracy to constant factors]:

S0(h) = S0, S1(h) = S1 + hS0, S2(h) = S2 + 2hS1 + h2S0 (9.1)

[Sµ and Sµ(h) are calculated in the coordinate systems K and K(h), respectively].
By “physical” stiffnesses, we understand stiffnesses calculated in the coordinate system in which the equality

S1(h) = 0 is satisfied.
From the equality S1(h) = 0 in (9.1), we obtain h = −S1/S0 (equation of the “neutral”plane). For

h = −S1/S0, it follows from (9.1) that

S0(−S1/S0) = S0, S1(−S1/S0) = 0, S2(−S1/S0) = S2 − (S1)2/S0. (9.2)

By virtue of (9.2), the condition

S0 = A0, S2 − (S1)2/S0 = A2 (9.3)

implies that the in-plane and flexural physical stiffnesses of the plate are equal to A0
ijkl and A2

ijkl, respectively.
In (9.3), A0 and A2 are the quantities that differ from the stiffnesses A0

ijkl and A2
ijkl by the same factors as Sµ differ

from Sµijkl; these factors depend on the type of stiffness and are described in detail in Sec. 8 [see formulas (8.2)].
Equations (9.3) are valid in an arbitrary coordinate system K. The value of S1 is indeterminate and should

be considered as a free parameter.
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We estimate the values of S1 for the coordinate system K in which the plane y = 0 coincides with the
mid-plane of the plate:

S1 =

1/2∫
−1/2

E(y)y dy ∈ I =
[
− Emax − Emin

8
,
Emax − Emin

8

]
.

As a result, we obtain the problem

h

1/2∫
−1/2

E(y) dy = A0
iiii, h2

1/2∫
−1/2

E(y)y dy = t, t ∈ I, h3

1/2∫
−1/2

E(y)y2 dy = A2 − t2

A0
, (9.4)

which is similar to problem (1.1) but depends on the parameter t. The parameter t is an additional design variable.
The solution of problem (9.4) is constructed in the following manner. The interval I is divided into segments of
equal length ∆. As a result, for each value of tk = −(Emax − Emin)/8 + ∆k, we obtain a problem similar to those
considered above.

In the examples given in Sec. 8, it is assumed that t = 0, i.e., the “neutral” plane coincides with the mid-
plane of the plate. It follows from (9.4) that the solutions of the design problem with the values of S1 close to zero
give a design with “physical” stiffnesses close to specified values. It is worth noting that the equality S1(h) = 0
(condition that determines the “neutral” surface) is unstable with respect to perturbations. However, the stiffness
characteristics are stable with respect to design perturbations.
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